

Quantitative PCR analysis to assess gene expression changes in hyperglycemic larval zebrafish

Version: 1

Edited by: Sandra Rieger

[Summary](#)[Reagents and Materials](#)[Protocol](#)[Potential Pitfalls](#)

Summary:

To assess hyperglycemia in larval zebrafish, we analyzed the expression of genes implicated in glucose metabolism, such as *insulin*, *insulin receptor*, *glucagon*, and *phosphoenolpyruvate carboxylase* (*pepck*), using quantitative PCR (qPCR). We analyzed gene expression following treatment of Tg(*ins:NTR-mCherry*) transgenic larvae either with 0.5 % DMSO (controls) or 10 mM metronidazole (see Protocol 2) for β -cell ablation at 3 and 8 days post fertilization (dpf).

Reagents and Materials:

Reagent/Material	Vendor	Order Number
RNeasy Mini Kit	QIAGEN, USA	74104
oligo (dT) or random hexamer primers	Integrated DNA Technology, USA	
SuperScript®III First-Strand Synthesis System for RT-PCR	Life Technologies, USA	18080-051
SYBR Green Brilliant III Ultra-Fast SYBR® Green QPCR Master Mix	Agilent Technologies, USA	600882
ROX reference dye (included in Brilliant III master mix)	Agilent Technologies, USA	600882
Mx3000P QPCR System	Stratagene, USA	Mx3000P

Primers:

Gene name	Gene symbol	5'-3' forward primer	5'-3' reverse primer
<i>insulin</i>	<i>ins</i>	ccc ttt atc tgg tct gtg gc	ttc ctt atc agc tcg gca tg
phosphoenolpyruvate carboxylase	<i>pepck</i>	gag aac agc acc atc ctc ag	tca ccg ttt tac tct cca cac
<i>glucagon a</i>	<i>gcga</i>	aag act tcg ttc agt ggc tc	tgg gtt gtc cgg att tta gc
<i>insulin receptor a</i>	<i>insra</i>	ata aga atg atc ggg agt gtg g	tgc ttg cat gag gat gga c
<i>Elongation factor alpha (control gene)</i>	<i>ef1a</i>	tct aca aat gcg gtg gaa tcg	gag caa tgt caa tgg tga tac c

Protocol

1. Preparation of mRNA from larval zebrafish. Pool 10 zebrafish larvae and isolate RNA according to the RNeasy Mini Kit (QIAGEN) manual. Elute final mRNA in 30 μ l of RNase-free water.
2. Preparation of cDNA from mRNA. Prepare cDNA from isolated mRNA according to the SuperScript®III First-Strand Synthesis System (Life Technologies) using either oligo(dT) or random hexamer primers.
3. Preparation of qPCR mix (according to the Agilent manual for preparation of the Brilliant III Ultra-Fast SYBR® Green QPCR Master Mix):

Dilute the reference dye 1:500 using nuclease-free PCR-grade water. Prepare the experimental reactions by combining the components of the reagent mixture in the order listed in the table below. Prepare a single reagent mixture for replicate reactions (plus at least one reaction volume excess) using multiples of each component.

Reagent Mixture

Nuclease-free PCR-grade water to bring final volume to 20 μ l (including cDNA)

10 μ l of 2 \times SYBR Green QPCR Master Mix

x μ l of upstream primer at optimized concentration (200–500 nM)

x μ l of downstream primer at optimized concentration (200–500 nM)

0.3 μ l of diluted ROX reference dye

Gently mix the reagent mixture without creating bubbles, then distribute the mixture to the experimental reaction tubes. Add 0.5–50 ng (x μ l) of cDNA to each reaction to bring the final reaction volume to 20 μ l.

We amplified each transcript using the following PCR conditions:

1) 95°C 3 minutes

2) 40 cycles
95°C 15 seconds
60°C 20 seconds,

3) Melting curve
95°C 1 minute
60°C 30 seconds
95°C 30 seconds,

Potential Pitfalls:

Inconsistent qPCR results: Always use master mixes and the suggested reference dye (ROX reference dye, Life Technologies, USA). Include pre-mix of triplicate reactions with sample and primers. Alternatively, utilize the Taqman system (Life Technologies).