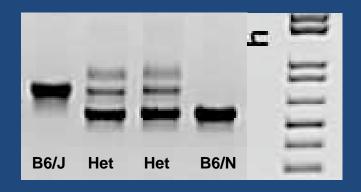
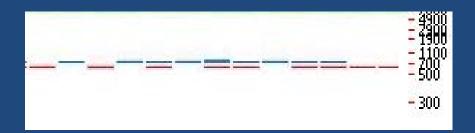

AMDCC Mouse Generation and Husbandry Core at The Jackson Laboratory

T1D-MGHC Project Highlights

Ed Leiter, T1DR Principal Investigator Cathleen Lutz, T1DR Co-Principal Investigator Racheal Wallace, T1DR Operations Manager Peter Reifsnyder, Senior Research Assistant Pam Stanley, Research Assistant


Drs Oliver Smithies/Masao Kakoki


Project: Produce Bradykinin B1 and B2 receptor double knockout with the Ins2^{Akita} mutation on a C57BL/6 background to explore the impact of defective bradykinin signaling.

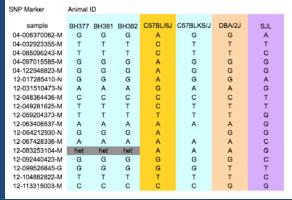
- 1. Imported and rederived B6/N Bradykinin B1 and B2 receptor double knockout mice and mated with B6/J-Akita.
- 2. Bred B6 Bradykinin B1 and B2 receptor mutation to homozygosity with Akita segregating.
- 3. Distributed B6 Bradykinin B1 and B2 receptor knockout, Akita/+ and breeders
- 4. Fix segregating population for B6/J *Nnt* mutation

Nnt mutation in B6/J

Segregating *Nnt* in Phenotyped *B6.Bdkrb1/2-/-, Akita*

Dr. Firouz Daneshgari

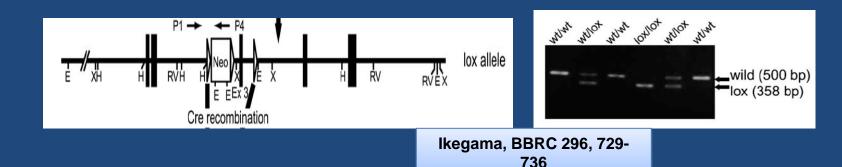
<u>Project:</u> To combine the floxed *Sod2* allele with the transgene transgelin-Cre/Esr (TagIn-creER) on a C57BL/6 background to explore the impact of increased ROS production in smooth muscle, specifically diabetic bladder dysfunction



- 1. Imported/rederived B6. SOD2^{floxed} and B6-TagIn-cre/Esr stocks
- 2. Bred the 2 alleles together.
- 3. Distributed heterozygous and homozygous B6. SOD2^{floxed} mice also heterozygous for TagIn-cre/Esr
- 4. Discovered that the imported SOD2^{floxed} allele had lost its neo cassette.

Dr. Eva Feldman

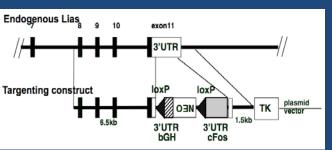
Project: Transfer the B6. SOD2^{floxed} and B6. Nestin-cre alleles onto the BKS. Lepr^{db} background to evaluate the role of ROS production in diabetic neuropathy.





- 1. Imported/rederived B6.SOD2floxed
- 2. Transferred SOD2^{floxed} and Tg(Nes-cre) alleles to BKS.Lepr^{db}.
- 3. Developed SNP panel to distinguish donor strain from targeted background strain.
- 4. Bred SOD2floxed in the BKS.Leprdb background to homozygosity
- 5. Distribute BKS. *Lepr*^{db} *SOD2*^{floxed} and heterozygous BKS-*Lepr*^{db} *SOD2*^{floxed} Tg(Nes-cre) breeders to produce experimental animals.

Sod2flox allele



Sod2flox cut by Tg(CMV-Cre)

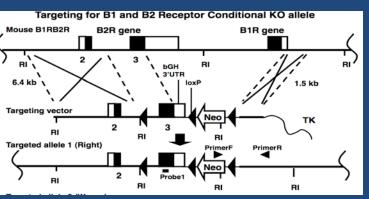
Dr. Nobuyo Maeda

Project: Produce a high/low set of B6 lines for Lipoic Acid Synthetase (Lias) expression

- 1. Identified chimeras and tested for for germline transmission
- 2. Mated founder's progeny to C57BL/6J (Tyr+ and Nnt-) and replaced Tyrc and Nnt+ with the B6/J alleles.
- 3. Shipped heterozygous and homozygous mice to PI for Liashigh activity determination
- 4. Mated to Tg(EIIA-cre) to create Liaslow
- Ship heterozygous and homozygous mice to PI for Liaslow activity determination
- 6. Mate Liaslow to B6-Ins2Akita
- 7. Cryopreserve all lines
- 8. Mate Liaslow to B6-Ldlr-KO

Dr. Ray Harris

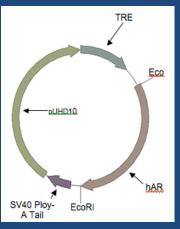
Project: Produce 129 targeted lines for a conditional nitric oxide synthetase (Nos3) to explore tissue specific pathogenic endothelial changes.

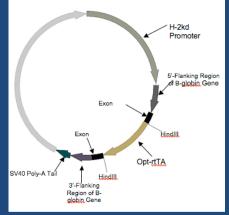


- 1. Tested 12 chimeric males for germline transmission containing correct construct
- Mated chimeric founders to 129S4-Flpe
 Shipped mice Nos3^{floxed}, Flpe heterozygous mice from 4 chimeric founder lines to PI for further breeding and to test **Nos3** expression
- 4. Maintaining each founder line until expression data are available
- 5. Transfer conditional Nos3 mutation onto the DBA/2J background.

Drs Oliver Smithies / Masao Kakoki

Project: Produce a conditional bradykinin 2 receptor knockout in a C57BL/6 background to explore tissue specific impact of impaired bradykinin signaling, when combined with the *Ins2*^{Akita} mutation.

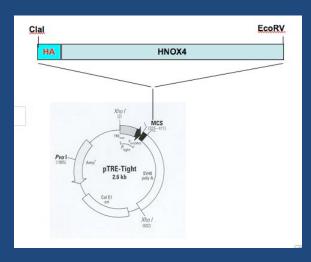




- 1. Test for germline transmission.
- 2. 8 medium low chimeric males
 - -No germline expression.
- 3. Re-inject ES cell clone using laser assisted technology -No chimeric pups born
- 4. Restart project using B6/J-albino ES cells for targeting.

Dr Ed Fisher

Project: Produce a tetracycline inducible (tet-On), bi-transgenic tetO-human aldose reductase and H2-K^d-rtTA in the B6/J background.



- 1. Established germline transmission of 14 founders.
- 2. Shipped double transgenic mice from each founder line.
- 2. Maintained each founder line until expression studies complete
- 3. Mating 3 high expressing founder lines to B6-Ldlr KO
- 4. Ship double transgenic, LdIr KO mice

Dr. Kumar Sharma

Project: Produce a tetracycline inducible (tet-On), Nox4 transgenic stock on FVB/N and DBA/2 backgrounds. The objective is to assess the effects of hyperglycemia on nephropathy after tissue specific over-expression of human NOX4.

- 1. Established germline transmission of 10 FVB/N Tet0-Nox4 founder lines
- 2. Shipped transgenic offspring from each Tet0-Nox4 transgenic founder
- 3. Maintaining each founder line until expression data are available
- 4. Transfer Teto-Nox4 and NPHS2-rtTA transgenes to DBA/2J background

Dr. Moshe Levi

Project: Transfer the Farnesoid X receptor (FXR) knockout allele onto DBA/2J and FVB/NJ with Ins2^{Akita} to evaluate the consequences of FXR deficiency in diabetic renal and cardiovascular complications.

SNP	FVB-FXF Mouse ID FX351		FX353	129	FVB	C57BL/6
10-077371167-G	Α	Α	Α	G	Α	G
10-086567143-M	Т	Т	Т	Т	С	Т
10-086817590-G	Т	Т	Т	Т	Α	Α
M-05799_1	G	G	G	G	С	G
FXR (Nr1h4 by PCR)	-/-	-/-	-/-			
10-099683776-N	С	С	С	С	G	С
10-100345477-M	Т	Т	Т	Т	С	Т
10-107333522-M	Т	Т	Т	Т	С	С
10-107789430-G	G	G	G	Α	Α	G
10-120289167-M	G	G	G	Α	G	Α

- 1. Using speed congenic technology, transferred FXR KO from B6 to FVB/NJ and DBA/2J.
- 2. Developed SNP panel to distinguish donor strain from target background strain.
- 3. Bred to Ins2^{Akita} mutation of same background strain.
- 4. Bred FXR mutation to homozygosity.
- 5. Distributing mice

Dr. Dale Abel

Project: Produce congenic C57BL/6-Ins2^{Akita} Netrin^{floxed} Tg(CAG-cre/Esr1) for evaluation of selective over-expression of Netrin

generation = N5 B6-Ntn1 <floxed> SNP Marker Mouse#</floxed>							
ON Marker	BS183	BS301	BS309	BS313	C57BL/6J	129S1	B6+129
05-149044358-M	С	С	С		С	Α	het
06-003167392-M	С	С	С	С	С	Т	het
06-030516093-G	Α	Α	Α	Α	Α	С	het
06-060887613-G	Α	Α	Α	Α	Α	G	het
06-090142535-M	С	С	С	С	С	Α	het
06-095139289-M	het	het	het	het	T	Α	het
Gt(Rosa)26 - Ntn1 heterozygous by PCR							
06-112199886-M	het	het	het	het	G	Т	het
06-119728826-G	het	het	het	het	T	Α	het
06-122941044-M	het	het	het	het	T	Α	het
06-128926170-M	С	С	С	С	С	Т	het
06-135955068-M	С	С	С	С	С	Α	het
06-140532504-G	С	С	С	С	С	G	het
06-146079591-M	Α	Α	Α	Α	Α	С	het
06-149052281-M	С	С	С	С	С	G	het
07-022997618-M	С	С	С	СС		Т	het
08-123340602-N	С	С	С	С	С	Т	het
09-102158958-M	С	С	С	С	С	Т	het

- 1. Imported /rederived Ntn1^{floxed} mutation on a mixed background
- 2. Developed a C57BL/6/129 SNP marker panel
- 3. Transferred the Ntn1 mutation onto a congenic C57BL/6J background.
- 4. Combine the B6-Ntn^{floxed} with B6.Tg(CAG-cre/ESR1) and B6.Ins2^{Akita} to eliminate the 129 derived Y-chromosome
- 5. Distribute mice

Dr. Frank Brosius

PROJECT: Produce congenic 129S6-Ins2^{Akita} Jak2^{floxed} Tg(Nphs2-cre) for evaluation of selective over-expression of Janus kinase.

	129S6. B6-	129S6. B6-	129S6.Cg- NPHS2-	129S6.Cg- NPHS2-	129S6- Gt(ROSA)-				12951	
SNP Marker	Akita	Akita	cre	cre	Jak2	12956	12951	C57BL/6J	XB6	SJL
01-184035421-M	С	С	С	С	С	С	T	С	het	
03-096257069-G	С	С	С	С	С	С	T	С	het	
04-003163167-M	Т	Т	het	het	Т Т	Т	Т	G	het	
04-009404597-G	NA	NA	het	het	NA	NA	G	Α	het	
04-010285677-G	NA	NA	het	het	NA	NA	G	Α	het	Α
04-013376218-G	NA	NA	het	het	NA	NA	Т	С	het	
04-020201305-G	NA	NA	het	het	NA	NA	Α	Т	het	
04-030080285-M	NA	NA	het	het	NA	NA	G	Α	het	
04-032923355-M	Т	Т	het	het	Т Т	Т	Т	С	het	
04-039199957-M	NA	NA	het	het	NA	NA	NA	NA	NA	
04-058850394-M	Т	Т	Т	Т	Т	Т	Т	С	het	
04-092052171-M	G	G	G	G	G	G	G	Α	het	
06-003167392-M	Т	Т	Т	Т	Т	Т	Т	С	het	
06-029636236-G	Т	Т	Т	Т	Т	Т	Т	G	het	
06-060887613-G	G	G	G	G	G	G	G	Α	het	
06-090142535-M	Α	Α	Α	Α	Α	Α	Α	С	het	
Gt(ROSA)26										
06-122941044-M	Α	Α	Α	Α	Α	Α	Α	Т	het	
06-149052281-M	G	G	G	G	G	G	G	С	het	
11-094206790-M	С	С	С	С	С	С	T	С	het	
11-118804416-N	Α	Α	Α		Α	Α	Α	G	het	

- 1. Imported/rederived stop-floxed-*Jak2*, NPHS2-cre mutations, 129-Ins2 Akita and 129S6-Tac
- 2. Developed 129S6 / B6 /FVB SNP panel
- 3. Completed 129S6 congenic backcross of the NPHS2-cre
- 4. Shipped 129S6-stop-floxed-*Jak2* and 129S6-NPHS2-cre breeders
- 5. Mating *Jak2* mutation to *Ins2* Akita and NPHS2-cre

MGHC stocks available only to AMDCC members

Stock# 006861 - C57BL/6-Ins2AkitaBdkrb1/Bdkrb2tm2Mki

Stock# 007709 - B6.129-Tg(TagIn-cre)1Feil/Fdmd

Stock# 007023 - B6.Cg-Sod2^{tm1Shs}/Elf

Stock# 007688 - 129S6.B6-Ins2Akita

Stock# 008523 - 129S6.Cg-Tg(NPHS2-cre)295Lb

*The following strains will need approval from Dr. Nobuyuki Takahashi at U. of North Carolina:

- -Stock# 008286 129.Cg-Nos3^{tm1Unc}/J
 - (Nos3 homozygous KO)
- -Stock# 008693 B6.Cg Ins2Akita Nos3tm1Unc/J
 - (Nos3 heterozygous, Akita heterozygous)

Other stocks should be available shortly, but will most likely be distributed for AMDCC collaborations

Next 6-8 Months

- 1. We will complete 11 of 15 approved projects maintaining small quantities for AMDCC distribution or transferring to public distribution (Akita stocks).
 - We have used or created 43 inbred or mutant stocks to accomplish these goals.
 - This does not account for multiple founder lines.
- 2. Cryopreservation of newly established stocks with multiple or single mutations.
- 3. Phenotyping studies of multigenic stocks.
- 4. Continue/start speed congenic projects for newly developed mutations Drs. Sharma and Harris.
- 5. Continue efforts to develop conditional B1RB2R KO.
- 6. Lias-L in combination with other mutations.

TJL Scientific Resources Utilized

Assisted Reproductive Services

- Importation
- Re-derivation
- Cryopreservation
- Cell Biology
- Microinjection

Phenotyping Services

- Necropsy Service
- Histotechnical Service
- Physiology Service
- Pathology/Veterinary Science

Genome Services

- Molecular Biology Service
- Transgenic
 Genotyping Service
- SNP Genotyping Service
- Fine Mapping Service

Vivarium Management

- Research Animal Facility
 - Basic Animal Husbandry
- Laboratory Animal Health
 - Microbiologic screening of barrier colonies

Operations

- TJL Customer Service
 - Mouse orders/shipping
- TJL Marketing
 - information/catalog
- Nomenclature
- Information Technology
- Multimedia Services

Phenotyping Data