Bradykinin B1 and B2 receptors both have protective roles in renal ischemia/reperfusion injury

Masao Kakoki*, Robert W. McGarrah, Hyung-Suk Kim, and Oliver Smithies*

Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599-7525

Contributed by Oliver Smithies, March 8, 2007 (sent for review February 14, 2007)

To explore the role of the kallikrein–kinin system in relation to ischemia/reperfusion injury in the kidney, we generated mice lacking both the bradykinin B1 and B2 receptor genes (B1R and B2R) by deleting the genomic region encoding the two receptors. In 4-month-old mice, blood pressures were not significantly different among B1R/null, B2R/null, and B1R/B2R-null mice. Increases in mRNA levels of TGF-β1, connective tissue growth factor, and endothelin-1 after ischemia/reperfusion injury were also exaggerated in the same order (from lowest to highest): WT, B2R-null, and B1R/B2R-null mice. Thus, both the B1 and B2 bradykinin receptors play an important role in reducing DNA damage, apoptosis, morphological and functional kidney changes, and mortality during renal ischemia/reperfusion injury.

Abbreviations: 8-OHdG, 8-hydroxy-2′-deoxyguanosine; ACE, angiotensin-I-converting enzyme; ACEI, ACE inhibitor; AT1AR, angiotensin II type 1A receptor; B1R, bradykinin B1 receptor; B2R, bradykinin B2 receptor; CTGF, connective tissue growth factor; ET, endothelin; I/R, ischemia/reperfusion.

*To whom correspondence should be addressed. E-mail: mkakoki@med.unc.edu or jenny_langenbach@med.unc.edu.

© 2007 by The National Academy of Sciences of the USA

Fig. 1. Generation of B1R/B2R-null mice lacking both B1R and B2R (Bdkrb1−/−/Bdkrb2−/−). The top line indicates the target locus in ES cells from C57BL/6J mice. RI EcoRI site. The middle line indicates the targeting vector, including the neomycin phosphotransferase gene (Neo) and thymidine kinase (TK) genes. Bold lines indicate mouse genomic DNA sequences. The bottom line indicates the resulting locus after homologous recombination. Both of the receptor genes are now disrupted. Coding and noncoding exons of the receptor genes are shown as black and white bars, respectively. and are numbered. The location of the primers and probe used to identify recombinants are as arrows (F and R) and a bar (probe).
lacking B2Rs. To generate mice lacking both receptor genes (B1RB2R-null, Bdkrb1−/−/Bdkrb2−/−) we therefore deleted the genomic region coding the two receptors, because no coding genes are predicted to be between the B1R and B2R (Fig. 1). Here we show that mice deficient in both receptors are extremely vulnerable to renal I/R injury. Furthermore, because the order of the severity of the injurious phenotypes increases progressively from WT to B2R-null to B1RB2R-null, we conclude that the both the receptors are important in reducing oxidative stress and protecting kidney tissue from I/R injury.

Results

Three groups of mice were studied: homozygotes lacking both the B1R and B2R (B1RB2R-null, Bdkrb1−/−/Bdkrb2−/−), homozygotes lacking B2Rs only (B2R-null, Bdkrb2−/−), and WT. Systolic blood pressures, measured at 4 months age with a tail-cuff method before carrying out the I/R, were not significantly different among the three groups [WT, 108.7 ± 1.5 mmHg (1 mmHg = 133 Pa) (n = 15); B2R-null, 109.6 ± 2.0 mmHg (n = 14); B1RB2R-null, 110.7 ± 1.6 mmHg (n = 17)]. Kidney function was also not significantly different among the three groups of mice at 4 months of age, as determined by plasma urea nitrogen and creatinine (data not shown). However, fasting plasma levels of nitrite/nitrate, the terminal metabolites of NO, decreased significantly in the three groups of mice in the following order (from highest to lowest decrease): WT, B2R-null, B1RB2R-null mice; this suggested the importance of both the B1R and B2R in total NO production (Fig. 2).

Twenty-four hours after the renal I/R procedure, the mortality rate was notably greater in B1RB2R-null (8 of 13) than in B2R-null (1 of 8) and WT (0 of 10) mice (P < 0.01 vs. WT, P < 0.05 vs. B2R-null; Fisher’s exact test), although no mortality was observed in B1RB2R-null (0 of 10), B2R-null (0 of 7), or WT (0 of 5) mice in sham-operated groups. In the surviving animals subjected to I/R, plasma levels of urea nitrogen and creatinine in the B1RB2R-null mice were higher than in B2R-null mice, which were higher than in WT mice (Fig. 3), although there was no significant difference in the urea nitrogen and creatinine levels among the sham-operated groups of the three genotypes. The severity of histological changes in renal proximal tubules were in the same order (from highest to lowest): B1RB2R-null, B2R-null, WT mice (Fig. 4).

Oxidative stress, DNA damage, and apoptosis have all been suggested to play a causative role in the functional and morphological changes accompanying I/R injury (2, 25). In agreement with this suggestion, we found the levels of 8-hydroxy-2′-deoxyguanosine (8-OHdG), which is considered to be an index of oxidative DNA modification (26), in total DNA of the kidney to be in the following order (from highest to lowest): B1RB2R-null, B2R-null, WT mice...
(Fig. 5A). The proportion of the D-17 deletion mutant in mtDNA, which increases with age (27) and diabetes (28) and has been shown to be an indicator of mtDNA damage, was also higher in the kidney subjected to the I/R injury in the same orders (from highest to lowest): B1RB2R-null, B2R-null, and WT (Fig. 5B). The number of apoptotic cells detected by TUNEL assay was likewise higher in B1RB2R-null mice than in B2R-null, which was higher than in WT mice (Fig. 6).

We next studied the mRNA levels of several I/R injury-related genes with quantitative RT-PCR. The levels of B1R mRNA were markedly increased in B2R-null mice, as previously shown, and this enhanced expression in B2R-null mice was increased further by I/R injury (Fig. 7A). Likewise, the levels of B2R mRNA were increased by I/R injury (Fig. 7B). These findings indicate that I/R injury increases the expression of both the B1R and the B2R.

We measured the mRNA levels of two components of the renin–angiotensin system. As previously reported, the mRNA levels of ACE and angiotensin II type 1A receptor (AT1AR) in the kidney were markedly decreased in I/R injury. The expression of ACE and AT1AR was less in B1RB2R-null mice than in B2R-null, which was higher than in WT mice and a previous report showing that urinary nitrite/nitrate excretion in B2R-null mice is lower than in WT mice (34) are additional indicators that the kallikrein–kinin system is important in basal NO production.

Recent studies have provided a likely explanation for this protection: I/R injuries are associated with mitochondrial Ca\(^2\)+ overload resulting from a burst of reactive oxygen species, and the combination of mitochondrial Ca\(^2\)+ overload and reactive oxygen species triggers the opening of mitochondrial permeability-transition pores and leads to cell apoptosis (35). This opening is effectively suppressed by bradykinin (36). NO, a second messenger of bradykinin receptors, reversibly suppresses mitochondrial oxidative metabolism (37–39) largely via inhibiting cytochrome \(c\) oxidase in a cGMP-independent manner (40, 41).

In contrast to the consensus that ACEIs have beneficial effects on I/R injury, previous reports are conflicting with respect to the effects of pharmacological agents interacting with the bradykinin receptors (20–22). In addition, several studies have suggested that agonism of the B1R and B2R may have different effects on the severity of I/R injury (21–23). In contrast, lack of the B1R (42) or B2R (43) aggravates the I/R injury in the heart and brain of mice, whereas adenovirus-mediated gene transfer of tissue kallikrein protects against ischemic stroke in rats (44). Transgenic expression of tissue kallikrein in mice attenuates ischemic cardiac damage (45), whereas tissue kallikrein knockout in mice aggravates the damage (24). In our current study, we show that I/R damage increases progressively in the order WT, B2R-null, and B1RB2R-null, as
determined by morphological and functional changes to the kidney, demonstrating clearly that both the B1R and B2R are important in protecting the kidney from I/R injury.

Oxidative stress, DNA damage, and apoptotic changes have all been implicated in I/R injury (25). We have previously reported markedly increased levels of 8-OHdG in kidney DNA resulting from the absence of B2Rs in animals with diabetes (28). In our present study, we have clearly demonstrated that I/R increases 8-OHdG in kidney DNA in the following order (from lowest to highest): WT, B2R-null, and B1B2R-null. The most common deletion mutant of mouse mtDNA (D-17), which increases with age (27) and diabetes (28), was also markedly increased in the kidney 24 h after the I/R procedure. The increase in this mtDNA alteration was enhanced progressively by absence of the B2R or of both the B1R and B2R. We also found that tubular morphological changes and the number of apoptotic cells after the I/R injury in the B1B2R-null mice was greater than in B2R-null mice, which was greater than in WT.

Traditionally, the kallikrein–kinin system is viewed as a major counteracting force to the renin–angiotensin system. In the current study, we demonstrated that the expression of both ACE and AT1AR is suppressed in I/R injury, as previously reported (46), and this suppression is exaggerated in absence of bradykinin receptors. The decrease in mRNA for ACE and AT1AR in I/R injury cannot be explained merely by the loss of the proximal tubular cells, which is the major site for ACE and AT1AR gene expression in the kidney (47, 48), because, even in the WT mice subjected to I/R, where there is little morphological change in proximal tubules, the expression of ACE and AT1AR was substantially decreased. Given the well-documented ability of angiotensin II to stimulate reactive oxygen species and to cause TGF-β1 production, the down-regulation of the renin–angiotensin system in I/R injury may be protective.

Previous studies have shown that TGF-β1, CTGF, and ET-1 increase in hypoxic tissue damages (29–31), and that their expression increases with aging (49, 50) and diabetes (51–53). In the present study, we found that these three genes were more expressed in B1B2R-null mice than B2R-null mice, and more expressed in B2R-null mice than WT, suggesting that both B1R and B2R are protective against renal cell damage in I/R injury. However, it is still unclear whether increased expression of these genes in I/R injury plays a primary/causative or secondary/protective role.

Our results show that the absence of the B1R and B2R, and to a lesser extent, the absence of B2R alone, enhances a series of changes including oxidative DNA damages, mtDNA deletions, apoptosis, and the expression of TGF-β1, CTGF, and ET-1, all of which are common to other oxidative stress-related disorders.
Reduced plasma levels of end products of NO are associated with the absence of B1R and B2R. Together, these data suggest that both the B1R and B2R, presumably acting in part via NO, mitigate renal I/R. Because ACEIs increase the level of bradykinin, our findings emphasize the importance of using ACEIs in situations in which I/R injury is likely to occur. Pretransplant treatment of the donor with ACEIs, as well as posttransplant treatment of the recipient, merits consideration.

In summary, we have shown that the kallikrein–kinin system, including both bradykinin B1R and B2R, is important in protecting the kidney from damage caused by I/R. The B1RB2R-null mice that we have generated should be useful for studying the role of kallikrein–kinin system in other physiological and pathophysiological conditions.

Methods

Animals. Mice having the null allele for B2R, generated by Borkowski et al. (54), were purchased from The Jackson Laboratory (Bar Harbor, ME) and bred in our mouse facility. The mice were backcrossed to WT C57BL/6J at least six times. Mice lacking both the B1R and B2R were generated in our laboratory and the progeny of subsequent progeny mice was backcrossed to WT C57BL/6J at least six times. Mice lacking both the B1R and B2R, presumably acting in part via NO, mitigate renal I/R. Because ACEIs increase the level of bradykinin, our findings emphasize the importance of using ACEIs in situations in which I/R injury is likely to occur. Pretransplant treatment of the donor with ACEIs, as well as posttransplant treatment of the recipient, merits consideration (5).

Quantitative RT-PCR. Total RNA was extracted from whole kidney, and the mRNAs for B1R, B2R, TGF-β1, CTGF, ET-1, and relaxin family peptide receptor 4 were assayed by quantitative RT-PCR, as described previously (15, 28, 57). Expression of ET-1 and relaxin family peptide receptor 4 was assayed with primers and probes for the following: ET-1 (forward, 5′-TGCCACCTGGGACATCATCTG-3′; reverse, 5′-AGCGTTGAGCTGGAAGAAC-3′; probe, 5′-FAM-TGGCACTGGTGGACCTGGAAGAAC-3′-FAM); relaxin family peptide receptor 4 (forward, 5′-AACTGGCAAGACGCGTGTTTCGACATTGGGTGTTGG-3′; reverse, 5′-FAM-AGCCCGCTCTGTTTGACATTGGGTGTTGG-3′; probe, 5′-FAM-AGCCCGCTCTGTTTGACATTGGGTGTTGG-3′-FAM).

Histological Evaluation. The kidney was fixed with 4% (wt/vol) paraformaldehyde. Tissue sections were stained with periodic acid Schiff's reagent with hematoxylin and examined by optical microscopy. The histological changes in the proximal tubule were semiquantified by using the criteria described by Jablonski et al. (56).

Quantification of mtDNA Deletion Mutants. Occurrence of the most common deletion mutant of mtDNA, D-17 (27), was assayed in kidney DNA samples by using quantitative PCR with primers flanking the deletion normalized by the amount of cytochrome b gene, as previously described (28).

Fluorescence Microscopy. TUNEL assay was performed on paraffin-embedded sections of kidney using ApopTag Fluorescein In Situ Apoptosis Detection Kit (Chemicon, Temecula, CA), as described previously (28). The numbers of TUNEL-positive cells were computationally counted (ImageJ version 1.33u; National Institutes of Health).

Statistical Analysis. The data are expressed as means ± standard errors. To compare groups, we used two-factor ANOVA or the χ² test. Post hoc pairwise comparisons were done by the Tukey–Kramer honestly significant difference test or Fisher’s exact test (JMP version 5.1.2; SAS Institute Inc., Cary, NC).

We thank John Hagaman, Kuikwon Kim, Nobuyo Maeda, Nobuyuki Takahashi, Randy Thresher, and Xiaowen Yi for assistance. This work was supported by The Howard H. Holderness Distinguished Medical Scholars Program (to R.W.M.), Career Development Award 2-2006-108 from the Juvenile Diabetes Research Foundation International (to M.K.), and National Institutes of Health Grants HL49277, HL70523, and HL71266 (to O.S.).
