Authors |
Sun D, Nakao S, Xie F, Zandi S, Bagheri A, Rezaei Kanavi M, Samiei S, Soheili ZS, Frimmel S, Zhang Z, Ablonczy Z, Ahmadieh H, Hafezi-Moghadam A
|
Submitted By |
Ali Hafezi-Moghadam on 7/2/2014 |
Status |
Published |
Journal |
FASEB journal : official publication of the Federation of American Societies for Experimental Biology |
Year |
2014 |
Date Published |
6/5/2014 |
Volume : Pages |
Not Specified : Not Specified |
PubMed Reference |
24903276 |
Abstract |
Diabetic retinopathy (DR) is a microvascular complication of diabetes and a leading cause of vision loss. Biomarkers and methods for early diagnosis of DR are urgently needed. Using a new molecular imaging approach, we show up to 94% higher accumulation of custom designed imaging probes against vascular endothelial growth factor receptor 2 (VEGFR-2) in retinal and choroidal vessels of diabetic animals (P<0.01), compared to normal controls. More than 80% of the VEGFR-2 in the diabetic retina was in the capillaries, compared to 47% in normal controls (P<0.01). Angiography in rabbit retinas revealed microvascular capillaries to be the location for VEGF-A-induced leakage, as expressed by significantly higher rate of fluorophore spreading with VEGF-A injection when compared to vehicle control (26±2 vs. 3±1 µm/s, P<0.05). Immunohistochemistry showed VEGFR-2 expression in capillaries of diabetic animals but not in normal controls. Macular vessels from diabetic patients (n=7) showed significantly more VEGFR-2 compared to nondiabetic controls (n=5) or peripheral retinal regions of the same retinas (P<0.01 in both cases). Here we introduce a new approach for early diagnosis of DR and VEGFR-2 as a molecular marker. VEGFR-2 could become a key diagnostic target, one that might help to prevent retinal vascular leakage and proliferation in diabetic patients.-Sun, D., Nakao, S., Xie, F., Zandi, S., Bagheri, A., Kanavi, M. R., Samiei, S., Soheili, Z.-S., Frimmel, S., Zhang, Z., Ablonczy, Z., Ahmadieh, H., Hafezi-Moghadam, A. Molecular imaging reveals elevated VEGFR-2 expression in retinal capillaries in diabetes: a novel biomarker for early diagnosis.
|
|
|