Sign-up for our newsletter
MAIN
Event Calendar
Awardee Reports
ABOUT DIACOMP
Citing DiaComp
Contact
Committees
Institutions
Awardee Reports
Publications
Bioinformatics
RESOURCES
Protocols & Methods
Reagents & Resources
Mouse Diet
Breeding Schemes
Validation Criteria
IMPC / KOMP Data
Publications
Bioinformatics
CONTACT
PARTICIPANT AREA
Login
▹
Home
Member Profile
Benjamin Humphreys
Personal Information
Title
Associate Professor
Expertise
Nephropathy
Institution
Washington University in St Louis
Newsletter?
Not signed up.
Data Summary
Type
Count
Grants/SubContracts
2
Progress Reports
2
Publications
8
Protocols
0
Committees
2
Grants/Applications
Progress Reports
Publications
Presentations
Protocols
Committees
Modeling the Renal Interstitium for Nephron Regeneration
The revolution in pluripotent stem cell biology, and subsequent insight regarding the differentiation of these cells into discrete tissues, has shown that self-organization during development is a biologic principle across organs. In vitro, embryonic stem cells can be coaxed to differentiate into nephron-like structures in a petri-dish - pointing towards a new strategy for generating fully differentiated nephrons ex vivo. Progress to date in generating self-organizing nephron-like structures in vitro has been limited to the epithelial compartment, including tubules and glomeruli-like structures. Ultimately, functioning nephrons will require a surrounding interstitial component, including stromal cells such as pericytes and fibroblasts, as well as pertubular capillaries. But there has been no study of regneration or modeling this compartment in vitro to date. This pilot application will address this knowledge gap with the goal of generating a renal interstitial environment in vitro. Our unique advance is that we have identified a previously unrecognized kidney resident cell type defined by expression of the transcription factor Gli1 which marks resident kidney mesenchymal stem cells (MSC). These cells are CD31-, F4/80-, CD45-, PDGFRß+, Sca1+, CD29+, CD105+, representing a consensus MSC surface profile. Moreover, they possess trilineage differentiation capacity and tightly associate with vascular endothelial cells both in vivo and in vitro. Our central hypothesis is that Gli1+ mesenchymal stem cells from kidney serve as an interstitial stem cell population. We further hypothesize that these cells will function to organize and regenerate the interstitial compartment by stabilizing endothelial tubes, giving rise to supportive pericytes and fibroblasts and interacting with epithelial basement membrane. We have designed a series of experiments to assess the ability of these stem cells to recapitulate and model the kidney interstitium in vitro, a critical step toward regenerating functional nephrons in vitro.
Defining Cellular Injury in Diabetic Nephropathy by Single Cell RNA Sequencing
Despite almost universal implementation within the last 20 years of treatments that were presumed to be reno-protective, diabetes continues to rank as the #1 cause of ESRD. Diabetic nephropathy (DN) is characterized by glomerulopathy, albuminuria and progressive tubulointerstitial fibrosis. Understanding the precise transcriptional changes that occur in single podocytes, tubular epithelium and interstitial cells during diabetic nephropathy may allow us to infer novel cell states and heterogeneity among these cells that will inform our understanding of disease pathogenesis. Single cell RNA-sequencing (scRNA-seq) has a unique advantage in characterizing cell transcriptomes because it can detect them comprehensively on a genomic scale. We have successfully implemented scRNA-seq in human kidney tissue, but we are limited by two critical hurdles. First, our dissociation protocols selectively enrich for proximal tubule epithelia but lack podocyte, fibroblast and endothelial cells, precluding their study. Second, our microfluidic-based scRNA-seq protocol requires very fresh tissue and cannot be performed on archival material. In this application we will attempt to overcome these substantial barriers by performing single nucleus RNA-seq (sNuc-seq) on archival, fresh frozen human kidney tissue of known histology and diagnosis. We believe that the nuclear isolation protocol will free all nuclei within our frozen sample, not just proximal tubule nuclei as with our single cell dissociation experience to date. We have already identified two normal and two diabetic nephropathy kidney samples in collaboration with the Boston Nephrectomy Biobank, led by Sus Waikar MD, MPH. The ability to perfrom sNuc-seq on archival material would also represent an enormous advance and open many new opportunities to study human diabetic nephropathy. We predict that measuring the gene expression repertoire of single nuclei has tremendous power to reveal stochastic gene expression and unappreciated differences in cell states during diabetic nephropathy.
Progress Reports
Drag a column header and drop it here to group by that column
Application
Complete Date
Report
Options
Defining Cellular Injury in Diabetic Nephropathy by Single Cell RNA Sequencing (Humphreys, Benjamin)
11/27/2018
View Progress Report Document
Modeling the Renal Interstitium for Nephron Regeneration (Humphreys, Benjamin)
10/29/2015
View Progress Report Document
Annual Reports
No uploaded documents found.
Publication
Altmetrics
Submitted By
PubMed ID
Status
Year: 2019; Items: 3
Advantages of Single-Nucleus over Single-Cell RNA Sequencing of Adult Kidney: Rare Cell Types and Novel Cell States Revealed in Fibrosis.
Wu H, Kirita Y, Donnelly EL, Humphreys BD
Journal of the American Society of Nephrology : JASN
, 2019 (30), 23 - 32
Humphreys, Benjamin
30510133
Published
Single-cell genomics and gene editing: implications for nephrology.
Wilson PC, Humphreys BD
Nature reviews. Nephrology
, 2019 (15), 63 - 64
Humphreys, Benjamin
30568287
Published
The single-cell transcriptomic landscape of early human diabetic nephropathy.
Wilson PC, Wu H, Kirita Y, Uchimura K, Ledru N, Rennke HG, Welling PA, Waikar SS, Humphreys BD
Proceedings of the National Academy of Sciences of the United States of America
, 2019 (116), 19619 - 19625
Humphreys, Benjamin
31506348
Published
Year: 2018; Items: 2
Bringing Renal Biopsy Interpretation Into the Molecular Age With Single-Cell RNA Sequencing.
Malone AF, Wu H, Humphreys BD
Seminars in nephrology
, 2018 (38), 31 - 39
Humphreys, Benjamin
29291760
Published
Single-Cell Transcriptomics of a Human Kidney Allograft Biopsy Specimen Defines a Diverse Inflammatory Response.
Wu H, Malone AF, Donnelly EL, Kirita Y, Uchimura K, Ramakrishnan SM, Gaut JP, Humphreys BD
Journal of the American Society of Nephrology : JASN
, 2018 (29), 2069 - 2080
Humphreys, Benjamin
29980650
Published
Year: 2016; Items: 2
Paracrine Wnt1 Drives Interstitial Fibrosis without Inflammation by Tubulointerstitial Cross-Talk.
Maarouf OH, Aravamudhan A, Rangarajan D, Kusaba T, Zhang V, Welborn J, Gauvin D, Hou X, Kramann R, Humphreys BD
Journal of the American Society of Nephrology : JASN
, 2016 (27), 781 - 90
Humphreys, Benjamin
26204899
Published
A Plumbing Solution for Stem Cell-Derived Kidneys.
Ó hAinmhire E, Humphreys BD
Transplantation
, 2016 (100), 3 - 4
Humphreys, Benjamin
26674728
Published
Year: 2015; Items: 1
Perivascular Gli1+ progenitors are key contributors to injury-induced organ fibrosis.
Kramann R, Schneider RK, DiRocco DP, Machado F, Fleig S, Bondzie PA, Henderson JM, Ebert BL, Humphreys BD
Cell stem cell
, 2015 (16), 51 - 66
Humphreys, Benjamin
25465115
Published
No uploaded documents found.
No protocols found.
Name
Description
Steering Committee
The DiaComp Steering Committee is the governing body of the consortium. The principle function of this committee is to guide the scientific direction of the consortium. This is accomplished by creating various subcommittees necessary to advance the scientific goals and providing guidance to the broader complications research community. Policies for the consortium are developed through consultation with the
External Evaluation Committee
Nephropathy
The DiaComp Nephropathy Committee has the principal function of furthering the mission of the consortium with regard to diabetic kidney disease.
Curation Flag Information
Display Stats
New comment to be added:
Flag Active?
OrderID
Experiment
Species
Status
Measurements
Options
No records to display.
Welcome to the DiaComp Login / Account Request Page.
Email Address:
Password:
Note: Passwords are case-sensitive.
Please save my Email Address on this machine.
Not a member?
If you are a funded DiaComp investigator, a member of an investigator's lab,
or an External Scientific Panel member to the consortium, please
request an account.
Forgot your password?
Enter your Email Address and
click here.
ERROR!
There was a problem with the page:
User Info
User Confirm
Please acknowledge all posters, manuscripts or scientific materials that were generated in part or whole using funds from the Diabetic Complications Consortium(DiaComp) using the following text:
Financial support for this work provided by the NIDDK Diabetic Complications Consortium (RRID:SCR_001415, www.diacomp.org), grants DK076169 and DK115255
Citation text and image have been copied to your clipboard. You may now paste them into your document. Thank you!